END SEMESTER EXAMINATION-May-2019

Program: Civil Engg.
Course Code: PEC-BTC- 819
Course Name: AIIP

> Duration:3 hrs.

Maximum Points: 100
Semester: VIII

Notes:

1. Q.1. is compulsory \& Solve any four from remaining six questions;

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER EXAMINATION -May-2019

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER EXAMINATION -May-2019

$6 . a$	A\} Define Following terms; 1. Strategic plan, 2. Implementation strategy, 3. Strategic implementation process, 4. Systematic implementation plan. B\} Explain best practices in Implementation planning for Infrastructure projects.	10			I	1.2.1
6.b	What are the different types of project plans should be consider while implementing infrastructure project?	10			I	1.2.1
7.a	Explain the following components of project implementation along with one example, 1. Design 2. Contracts \& agreement 3. Installation	10	3		II	1.2.1
7.b	Your organization has won a tender to create a new "Software as a Service" product, and you're in charge of the project. You decide to use a Gantt chart to organize all of the necessary tasks, and to calculate the likely overall timescale for delivery. Construct GANTT chart,	10	3		VI	1.2.1

END SEMESTER EXAMINATION -May-2019

End Semester Examination, May, 2019

Program: B. Tech. Civil
Course Code: PEC - BTC - 813
Course Name: Pavement Design and Construction (Elective - II)
Semester: VIII

Notes: Assume suitable data if required

End Semester Examination, May, 2019

Q.4.					
a	Discuss the Procedure for preparation and approval of DPR in PMGSY scheme.	06	04	03	1.6.1
b	Cement concrete pavement has a thickness of 30 cm . design the tie bar in longitudinal joint using the data given below; Allowable working stress in steel tie bar $=1250 \mathrm{~kg} / \mathrm{cm}^{2}$ Unit weight of concrete $=2400 \mathrm{~kg} / \mathrm{m}^{3}$ Allowable working stress between steel tie bar and concrete $=$ $17.5 \mathrm{~kg} / \mathrm{cm}^{2}$ Coefficient of friction $=1.2$	07	01	04	5.4.1
c	Calculate the wheel load stress due to edge loading and corner loading using Westergaards approach and Modified Westergards approach using following data Wheel load $=5100 \mathrm{~kg}$, Modulus of Elasticity of Concrete $=3.1 * 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}$ Modulus of subgrade reaction, $\mathrm{k}=8 \mathrm{~kg} / \mathrm{cm}^{3}$, Thickness of slab $=22 \mathrm{~cm}$ Radius of loaded area $=16 \mathrm{~cm}$, Poisons ratio $=0.15$	07	01	04	5.4.1
Q. 5.					
a	Kansas Triaxial Method for Flexible Pavement Design	06	01	04	
b	Discuss Rutting and Fatigue failure criteria	06	04	03	
c	Design the thicknesses of different layers of flexible using triaxial method for the following data. Wheel load $=5100$ kg , Radius of contact area $=15 \mathrm{~cm}$, Traffic coefficient, X $=1.25$, Rainfall coefficient, $Y=0.8$, design deflection, Δ $=0.25 \mathrm{~cm}$, modulus of elasticity of subgrade soil $E_{s}=130$ $\mathrm{kg} / \mathrm{cm}^{2}$, modulus of elasticity of base course material, Ebuse $=375 \mathrm{~kg} / \mathrm{cm}^{2}$, modulus of elasticity of bituminous concrete layer material $=1200 \mathrm{~kg} / \mathrm{cm}^{2}$ and the thickness of bituminous concrete is 9.0 cm .	08	01	04	5.4.1
Q.6.					
a	How will you decide Optimum Quantity of Lime required for Stabilization of Subgrade soil through Laboratory test.	06	04	02	2.5.1
b	A Plate Bearing Test conducted on subgrade soil using 30 cm diameter plate. The load value and corresponding average dial gauge readings are given in the Table 1. Determine the modulus of subgrade reaction. Apply the correction for plate size.	07	01	03	5.4.1

End Semester Examination, May, 2019

c	The diameter of largest size particle is 50 mm . estimate the percentage $40 \mathrm{~mm}, 25 \mathrm{~mm}, 20 \mathrm{~mm}, 12.5 \mathrm{~mm}, 10 \mathrm{~mm}, 4.75$ $\mathrm{mm}, 2.36 \mathrm{~mm}, 1.18 \mathrm{~mm}$ and 0.075 mm size particles in a given mix for maximum density-using Fuller formula.	07	04	04	2.5.1
Q.7.					
a	Explain Benkelman Beam Theory	05	02	02	1.6 .1
b	Discuss classification of Low cost Roads	05	04	01	1.6 .1
c	The Benkelman beam study was conducted on a stretch of 10 km long road and 10 sets of observations taken are given in Table 2. If the least count of dial gauge is 0.01 calculate the rebound deflection. The traffic volume study shows that the road carries a traffic of 2200 cvpd , the temperature at the time of Benkelman beam study was $31^{\circ} \mathrm{C}$ and subgrade moisture correction factor is 1.2 , calculate overlay thickness to be provide above existing pavement. (assume VDF $=2.5, \mathrm{LDF}=0.75$, Design Life $=10$ years)	10	02	03	5.4.1

Table 1.

Mean dial gauge reading in mm	0	0.30	0.55	0.80	1.12	1.40	1.75	2.10	2.20	2.25
Load value in kg	0	600	1200	1350	1810	1960	2110	2200	2280	2370

Table 2.

Sets of Observation	D_{0}	D	D_{f}
1	0	33	30
2	0	37	32
3	103	41	38
4	104	36	33
5	105	35	33
6	101	42	39
7	101	43	40
8	0	41	38
9	0	42	$4 n$
10	0	29	26

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination
May - 2019

Max. Marks: 100
Class: B.Tech.
Name of the Course: Earthquake Engineering

Duration: 3 Hours
Program: Civil Engineering Course Code : PEC- BTC 502

Instructions:

- Attempt any FIVE (uuestions out of SEVEN questions.
- Answers to all sub cuestions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable dara if necessary and state the same clearly.

Question No		Points	CO	BL	PI
Q1 (a)	(i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done. (ii) What is an earthquake? How the earthquakes are classified based on their causes? (ii) Explain the different types of seismic waves and their characteristics	3 4	1	1	2.1 .1 1.2.1 1,2.1
Q1(b)	(i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m . In general what will be the degrees of freeclom for this structure? And specify these DoF. Calculate the natural frequency of the structure for excitation in X and Y direction separately. (ii) If the system is subjected to harmonic force with amplitude of 100 KN and excitation frequency of 25 $\mathrm{rad} / \mathrm{sec}$ at slab level in X direction, evaluate the maximum lateral displacement of the slab. The weight on slak is $150 \mathrm{Kg} / \mathrm{m}^{2}$, uniformly distributed. Assume	5	1	3	1.3.1, 1.4.1
		Rigid	lab		

DISPLACEMENT RESPONSE SPECTRA

$2 B$ SPECTRA FOR RESPONSE SPECTRUM METHOD
Fig. 2 Design Acceleration Coefficient ($\mathrm{S}_{\mathrm{a}} / \mathrm{g}$) (Corresponding to 5 Percent Damping)

Fig.2. Q6.(d)

END SEMESTER EXAMINATION -May-2019

Program: Civil Engg.
Course Code: HSM-BTC- 805
Course Name: E \& M

Duration: 3 hrs.
Maximum Points: 100
Semester: VIII

Notes:

1. Q.1. is compulsory \& Solve any four from remaining six questions;

Q.No.	Questions	Points	CO	BL	PI
1.	Solve any four: 1.Entrepreneurial Culture 2. Functions of Management 3. SWOT analysis 4. Socio economic origins of entrepreneurship 5. Line \& line \& staff organization.	20	1-3	III	2.1.3
2.a	What are the different barriers affecting to entrepreneurship process?	10	1	I	2.1.3
2.b	Explain the various classification/types of entrepreneurs along with one example. (any 10)	10	1	II	2.1.3
3.a	Explain the necessity of entrepreneurial motivation. Also explain the McClelland Need for Achievement Theory	10	2	II	2.1.3
3.b	Explain various types of Ownership structures in organization.	10	3	II	2.1.3
4.a	Define the small scale industry and also Highlight the chief characteristics of it	10	3	I	2.1.3
4.b	A.] a product currently sells for Rs. $12 /$ unit. The variable costs are Rs.4/unit and 10000 units are sold annually and a profit of Rs. 30,000 is realized per year. A new design will increase the variable cost by 20% and fixed cost by 10% but sales will increase to 12000 units per year. a) at what selling price do we break even b) if selling price to be kept same what will the annual profit?	10	3	I	1.1.1

END SEMESTER EXAMINATION -May-2019

Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination, May- 2019

Max. Marks: 100
Class: Final Year B.Tech
Name of the Course: Construction Management

Instructions:

1. Question No I is compulsory.
2. Attempt any four questions out of remaining six.
3. Draw neat diagrams
4. Assume suitable data if necessary

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question No. 1 (solve any five from a to g)} \& Points \& CO \& BL \& PI \\
\hline Q1 \& \begin{tabular}{l}
(a) Why construction Industry is called Unique and Temporary? \\
(b) "All contracts are Agreements but all Agreements are not contract", justify statement with suitable examples. \\
(c) Discuss the factors affecting Job layout. \\
(d) Differentiate Q.C. and Q.A. \\
(e) Explain with neat sketch working capital cycle \\
(f) Describe steps to be considered for project monitoring. \\
(g) Explain the term resource 'smoothening'.
\end{tabular} \& \[
\begin{aligned}
\& 4 \\
\& 4 \\
\& 4 \\
\& 4 \\
\& 4 \\
\& 4 \\
\& 4
\end{aligned}
\] \& \[
3
\] \& 2
2
1
1
2 \& \begin{tabular}{l}
1.3 .1 \\
1.3 .1 \\
\\
1.4 .1 \\
1.4 .1 \\
1.3 .2 \\
1.3 .1 \\
1.4 .1 \\
\hline 2.3 .2
\end{tabular} \\
\hline Q2 \& \begin{tabular}{l}
(a) Three time estinates \(t_{0}, t_{m}, t_{p}\) in days in each activity in a project are given below, draw the network diagram. \\
Find the expected duration and variance of each activity. \\
(i) Determine expected duration of project. \\
(ii) Determine probability of completion of project, 3days before and 3 days after the normal duration. \\
(iii) Also determine the duration of the project, corresponding to (a) \(95 \%\) (b) \(75 \%\) probability of completion.
\end{tabular} \& 10 \& 1

3 \& 2 \& 2.3 .2

\hline
\end{tabular}

End Semester Examination - May 2019

Program: B.Tech. Civil Engineering
Course Code: PC - B1 C802

Duration: 03 hours
Maximum Points: 100

Course Name: Quantity Survey Estimation \& Valuation Semester: VIII

Notes:

1. Question 1 is compulsory
2. Attempt any FOUR out of remaining SIX questions
3. Answer to each question should be written on a new page
4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	CO	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the impoltance of it in estimation and costing: i. Measurement of works ii. Recomrnendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a ender notice to be drafted for any construction work. c) List all methods of valuation of land. List first five $\begin{gathered}\text { Standardes of }\end{gathered}$ valuation and ts purpose. d) State the characteristics of mass haul diagram (MHD). Draw MHD for eathwork in excess, earthwork in deficit and balanced earthwork e) State the requirements of a good 'specification for materials' and specification for item of work'.	20	3 4 2 2	1 1	3.5.4 3.5.2 3.5.4 3.5.4 10.4.2
2	Prepare an estimate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Iteml: Providing; and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providing and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in wails. Item 4: Providing 15 mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of wolk for the item 2 in Q .1 is described as: ${ }^{\prime}$ Providing and laying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'				

Page 1 of 5

End Semester Examination - May 2019

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai - 400058
End Semester Examination - May 2019

Program: B.Tech. Civil Engineering
Course Code: PC - Bl ${ }^{\prime 2}$ C802

Duration: 03 hours
Maximum Points: 100

Course Name: Quant ty Survey Estimation \& Valuation Semester: VIII

Notes:

1. Question 1 is compulsory
2. Attempt any FOUR out of remaining SIX questions
3. Answer to each question should be written on a new page
4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	CO	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the importance of it in estimation and costing: i. Measurement of works ii. Recomrnendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a ender notice to be drafted for any construction work. c) List all methods of valuation of land. List first five stables of valuation and its purpose. d) State the characteristics of mass haul diagram (MHD). Draw MHD for earthwork in excess, earthwork in deficit and balanced earthwork e) State the requirements of a good 'specification for materials' and specification for item of work'.	20	3 4 2 2	1 1 1 1	3.5.4 3.5.2 3.5.4 3.5.4 10.4.2
2	Prepare an estimate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Item1: Providing; and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providirg and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in walls. Item 4: Providiny 15 mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of work for the item 2 in Q. 1 is described as: 'Providing and laying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'				

Page 1 of 5

END SEM - May 2019 Examinations

Program: Civil Engg.
Course Code: PC-BTC8O1

Design and Drawing of Reinforced Concrete Structures

Semester: VIII

Notes:

1) Attempt any one of the following.
2) Use of IS $456: 2000$ is permitted.
3) Figures to right indicate full marks.
4) Assume suitable data if necessary and state the same clearly

Q.No.	Questions	Points	CO	BL	PI
1.	For the floor system shown in figuren, design SLAB S1-S2-S3 Take live load $=3 \mathrm{KN} / \mathrm{m}^{2}$ and 200 mm soil fill (density $18 \mathrm{Kn} / \mathrm{m}^{3}$). Use M30 and Fe-500. Draw reinforcement details along the section shown. Give all checks.	20	1,2,3,4	4,5,6	3.1.3,2.1.4
2.	For the floor system shown in figuref1, design beam b1-b2-b3. Use M30 and $\mathrm{Fe}-500$. Draw reinforcement details. Assume slab depth as 200 mm and assume 200 mm soil fill (density 18 $\mathrm{Kn} / \mathrm{m}^{3}$) on slabs. Give all checks with proper detailing of the beams.	20	1,2,3,4	4,5,6	3.1.3,1.1.4
3.	A rectangular water tank 4.5 m long , 2.25 m wide and 2.25 m high has its walls hinged at top and bottom.Design walls of tank. Use M30 and Fe 415. Use IS code method.	20	1,2,3,4	4,5,6	4.1.3,4.1.4
4.	Design circular tank using approximate method with fixed base resting on ground and free at top for capacity of 550 m 3 . Height of tank is restricted to 5.2 m . Use M-30 and Fe415. Draw reinforcement details. oct $=1.5 \mathrm{~N} / \mathrm{mm} 2$ and $\sigma s t=130 \mathrm{~N} / \mathrm{mm} 2$.	20	1,2,3,4	4,5,6	3.1.2,2.1.4
5.	The staircase room for a four storeyed framed structureof a residential building is of size $3.9 \mathrm{~m} \times 5.3 \mathrm{~m}$ betwoen centre of columns. The columns are of size $250 \mathrm{~mm} \times 250 \mathrm{~mm}$. The widu of beam and supporting wall is 230 mm . The floor to floor height is 3.2 m .Use M-25,Fe-415.Design a suitable dog-legged stairs and draw details of reinforcement for both the flights	20	1,2,3,4	4,5,6	3.1.2,2.1.4
6.	A reinforced cantilever RW is supporting backfill of height 4.5 m above ground level with density of soil $=18 \mathrm{kN} / \mathrm{m} 3$, Angle of repose $=30^{\circ}, S . B . C$ of soil $=175 \mathrm{kN} / \mathrm{m} 2$ and coefficient of friction between concrete and soil $=0.3$. Design the Stem and heel of the wall only showing all stability checks. Draw reinforcement details also. Use M30 \& Fe 415 .	20	1,2,3,4	4,5,6	3.1.2,2.1.4

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andher1 (W) Mumbai - 400058
END SEM - May 2019 Examinations

	The layout of the columns of the building is shown in figure 1. The outer column are 450x450 mm in size and carry load of 1500 kN each. The inner column are 450x450 mm in size and cary a load of 1500 kN each. Consider SBC of soil as 200kN/m2. Use M30 and Fe-415 Design only main beam of the raft foundation. Show reinforcement details also.	20	$1,2,3,4$	$4,5,6$
7.	$4.1 .2,5.1 .4$			

$\operatorname{fng}(11)$

TAELE 7 SHEAR AT EDGES OF WAIL PANEL HINGEP AT TOP AND EOTTOM

(Clexses 2.3.1, 2.3.3, 2.3.3.2, 2.3.4, 2.3.4.1 and 2.3.6)

(1)

Mid-point of bottom edge
Corner at bottom edge
Mid-point of fixed side edge
Lower third-point of side edge
Lower quarter-point of side edge
Total at top edge
Total of botom edge
Total at one fixed side eder

$\begin{aligned} & +0.1407 u a^{2} \\ & -0.2575 \mu a^{2} \end{aligned}$	$\begin{array}{r} +0.2419 w a^{2} \\ -0.4397 w a^{2} \end{array}$	$\begin{aligned} & +0.3290 \mathrm{wa}^{2} \\ & -0.5833 \mathrm{wa}^{2} \end{aligned}$	二	二	$\begin{aligned} & +0.3333 z \boldsymbol{a}^{2} \\ & -0.6000 a^{2} \end{aligned}$
+0.128 0 200at	+0.2582uas	+0-360 4 was 2	-	-	+0.3912 wa^{2}
$+0.1736 \mathrm{wa}^{2}$	+0.3113aaz	$+0.4023{ }^{1002}$	-	-	+0.4116 600^{8}
		$\begin{array}{r} +0.3904 w a^{2} \\ 0.0338 \operatorname{wan}^{2} b \\ 0.1818 w a^{2} b \end{array}$	$\begin{aligned} & 0.12 \overline{3} \mathrm{zacsh} \\ & 0.2715 \cos ^{25} \end{aligned}$	$\begin{aligned} & 0.1435 \cos ^{2 b} \\ & 0.3023 \text { wese } \end{aligned}$	
$\begin{aligned} & 0.220 \\ & 0.500 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0-1991{ }^{1} w^{2} a^{2 b} b \\ & 0.5000 \end{aligned}$	$\begin{aligned} & 0.1322 \text { wad }^{2} \mathrm{~b} \\ & 0.50000 \mathrm{ma}^{2} \mathrm{~b} \end{aligned}$	$\begin{aligned} & 0.05411 x^{2} b \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.0271 \\ & 1 \\ & 0.500 \cos ^{2} \end{aligned}$	$\begin{aligned} & 0.275 \\ & 0.50000008 \end{aligned}$
sign indicates the sity of the liquid.	reaction acts in	rection of lond.			

Nots 1 - Negative sign indicater that reaction acts in direction of load
Nors 2-m Density of the liquid.

- Extimated.

End Semester Examination - May 2019

Program: B.Tech. Civril Engineering
Course Code: PC - BIC802
Course Name: Quantity Survey Estimation \& Valuation Semester: VIII

Notes:

1. Question 1 is compulsory

2. Attempt any FOUR out of remaining SIX questions
3. Answer to earh question should be written on a new page
4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	CO	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the importance of it in estimation and costing: i. Measurement of works ii. Recommendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a ender notice to be drafted for any construction work. c) List all metho is of valuation of land. List first five $\begin{gathered}\text { stables of }\end{gathered}$ valuation and its purpose. d) State the characteristics of mass haul diagram (MHD). Draw MHD for earthwork in excess, earthwork in deficit and balanced earthwork e) State the requirements of a good 'specification for materials' and specification for item of work'.	20	1 3 4 2 2	1 1 1 1 1	$\begin{aligned} & 3.5 .4 \\ & 3.5 .2 \\ & 3.5 .4 \\ & 3.5 .4 \\ & 10.4 .2 \end{aligned}$
2	Prepare an estir ate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Iteml: Providing, and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providirg and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in walls. Item 4: Providing 15 mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of work for the item 2 in Q. 1 is described as: 'Providing and laying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'				

Page 1 of 5

cha	$\pi / 5$	1/0x=200									
		5 mo		$y=3 / 4$				$x=6 / 4$		$x=0$	
		M	4	${ }^{6}$	4.4	ME	4	M_{8}	M_{5}	Me	Ms
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10).	(11)	(12)
2409	$1 / 4$	+0.025	$+0.013$	+0015	+0-009	-0-007	-0-037	+0.015	+0-009	+0.025	+0.013
	$1 / 2$	+0-012	+0.020	+0.028	+0.015	-0-012	-0.059	+0.028	+0.015	+0.022	+0000
		$+0.040$	+0.016	+0.009	$+0.013$	-0.011	-0.053	$+0.029$	$+0.013$	$+0.040$	+0016
1.75	$1 / 4$	+0025	+0-013	+0-015	+0-009	-0.007	-0-086	+0.011	+0-008	+0.020	
	$1 / 2$	+0022	+0-020	+0-028	$+0015$	-0.012	-0.008	+0.012	+0-013	+0.035	$+0.021$
	3/4	+0-64	+0.016	+0-029	$+0.013$	-0.010	-0.052	+0.024	+0-012	+0-035	+0017
1.50	1/4	$+0.025$	+0013	+0.016	$+0.009$	-0.007	-0034	$+0.007$	+0-006	+0.014	
	112	+0.043	+0000	+0.028 +0.028	+0.015	-0.011	-0.056	+0.007 +0.015	+0.011	+0.012 +0.027	$\begin{aligned} & +0013 \\ & +0.021 \end{aligned}$
	$3 / 4$	$+0.041$	$+0.016$	+0.029	$+0.013$	-0.010	-0060	$+0.019$	+0.010	+0.029	+0.017
1.25	$1 / 4$	+0026	+0.013	+0.016	+0.010	-0.006	-0.032	+0.003	+0.003	+0.007	+0.011
	12	+0.043	+0.020	+0.029	+0.015 +0.013	-0.010	-0.052	+0.008 +0.008	+0.007	+0.018 +0.018	+0.012 +0.019
	3H	+0.041	+0.016	+0-650	$+0.013$	-0.010	-0.048	$+0.013$	$+0.008$	+0.021	+0.016
:00	148	+00-026	+0-013	10087	+0-010	- 0.006	-0.028	$=0.001$	+0000		
	$1 / 2$	+0.044	+0.020	+0.050	+0.016 +0.014	-0.009	-0.046	+0.002	$+0.092$	$\begin{aligned} & +0.002 \\ & +0.007 \end{aligned}$	$\begin{aligned} & +0068 \\ & +0.014 \end{aligned}$
	3/4	+0-041	+0.016	+0-031	+0.014	-0.009	-0.044	+0.007	+0.004	+0.013 +0.013	+0.12 +0.013
0.75											
	1/2	$\begin{aligned} & +0.021 \\ & +0.045 \end{aligned}$	$\begin{array}{r} +0.013 \\ +0.020 \end{array}$	$\begin{aligned} & +0.018 \\ & +0.051 \end{aligned}$	$\begin{aligned} & +0.010 \\ & +0.016 \end{aligned}$	$\begin{aligned} & -0.005 \\ & -0.008 \end{aligned}$	$\begin{array}{r} -0.024 \\ -0.040 \end{array}$	$\begin{aligned} & -0.003 \\ & -0.002 \end{aligned}$	$\begin{aligned} & -0.004 \\ & -0.004 \end{aligned}$	$\begin{array}{r} -0.001 \\ +0.000 \end{array}$	$\begin{aligned} & +0002 \\ & +0005 \end{aligned}$
	3/4	+0.042	+0.016	$+0.032$	+0.014	-0.008	-0.041	+0.032	-0002	+0.000 +0.005	$\begin{aligned} & +0.008 \\ & +0.008 \end{aligned}$
0.50		$+0.027$									
	$1 / 2$	$+0-046$	$+0.020$	$\begin{aligned} & f 0019 \\ & +0-033 \end{aligned}$	$\begin{aligned} & +0.010 \\ & +0.017 \end{aligned}$	$\begin{aligned} & -0.004 \\ & -0007 \end{aligned}$	$\begin{aligned} & -0.021 \\ & -0.034 \end{aligned}$	$\begin{array}{r} -0.004 \\ -0.006 \end{array}$	$\begin{array}{r} -0.010 \\ -0.015 \end{array}$	$\begin{array}{r} -0.004 \\ -0.006 \end{array}$	$\begin{array}{r} -0.007 \\ -0.009 \end{array}$
	$3 / 4$	+0.012	+0016	+0005	+0.015	-0.007	-0.037	-0.008	-0.010	$\begin{aligned} & =0000 \\ & -0.002 \end{aligned}$	$\begin{array}{r} -0.008 \\ -0.005 \end{array}$
											Cuntinued)

TAELE 7 SHEAR AT EDGES OF WALL, PANEL HiNGED
AT TOP AND EOTTOM
(1)

Mid-point of botrom codge
Corner at bottom edge
Mid-point of fixed side edge
Lower third-poins of side edge
Lower quarter-point of side edge

Total at top edge

Total of botom edge
Total at one fixed side edpe
Total at all four edges

Note 1 - Negative sigp indicates that renction acts in direction of lond Nots 2-mo Density of the liquid.
Extimated.

