

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION -May-2019

Program: Civil Engg.

Duration:3 hrs.

Course Code: PEC-BTC-819

Maximum Points: 100

Course Name: AIIP

Semester: VIII

Notes:

1. Q.1. is compulsory & Solve any four from remaining six questions;

Q.No.		Quest	ions	Points	со	BI	P
1.	1. Sta 2. Ma 3. Bre 4.Niti	any four: keholders & their role in rket Appraisal ak-even analysis Aayog al Cost benefit analysis	Infrastructure project	20	1-3	Ш	2.1.
2.a	Explaint technic	n necessity of project cal appraisal in detail.	appraisal. Also explain	10	1	Ш	1.3.
2.b	Explain characteristics of infrastructure project in detail. Compare Rural infrastructure Vs Urban Infrastructure. 10				1	IV	1.3.1
	capital	pany has an investible sur- e six projects identified for outlays an NPV are tabula on combination of projects					
	- Postancer	nts of Rs.40,00,000/-	Jamesoury		1		
3.a	- Postancer						
3.a	Project	115 01 13.40,00,000/-	NPV	10	2	III	1.3.1
3.a	Project A B	Intial Capital outlay	NPV 65,00,000/-	10	2	III	1.3.1
3.a	Project A B C	Intial Capital outlay 20,00,000/-	NPV 65,00,000/- 55,00,000/-	10	2	Ш	1.3.1
3.a	Project A B C	Intial Capital outlay 20,00,000/- 15,00,000/- 10,00,000/-	NPV 65,00,000/- 55,00,000/- 32,50,000/-	10	2	ш	1.3.1
3.a	Project A B C D E	Intial Capital outlay 20,00,000/- 15,00,000/-	NPV 65,00,000/- 55,00,000/- 32,50,000/- 29,00,000/-	10	2	ш	1.3.1
	Project A B C D E	Intial Capital outlay 20,00,000/- 15,00,000/- 10,00,000/- 8,00,000/-	NPV 65,00,000/- 55,00,000/- 32,50,000/- 29,00,000/- 20,00,000/-	10	2	ш	1.3.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

4.a	"PPP is prefer Finance" Just PPP model in	iiy abov	e statem	ent with a	Infrastru any four (cture	10	2,3	II	1.3.1
	Explain payb Investment on to take 2 year project is expe estimated prof	the proj for implected to	ject is Rs lementati earn prof	.15,00,00 on of the	00/ It is project.	expected				
4.b	Operating	3 rd year 1.7	4 th	5 th year	6 th year	7 year				
	profit	1./	1.85	2.2	2.52	2.12	06	3	II	2.1.3
	Tax	0.7	0.6	0.72	0.88	0.69				
	Depreciation	3.6	2.42	1.68	0.99	0.70				İ
	(all values in F	ks. Lakh	1)				1			
	Explain limitati	on of Pa	ayback po	eriod.						
4.c	Explain any for					1	04	3	II	1.2.1
4.c	Define inflation appraisal of pro	and efformation and internal an	ect of inf	lation on	financial		04	3	II	1.2.1
	Define inflation appraisal of pro	and efficient. al internasis ever	ect of inf al rate of y year,	lation on	financial	ng 10%	04	3	II	1.2.1
4.c 5.a	Define inflation appraisal of pro Calculate the recon compound ba Year Cash ou	and effort. al internasis ever	ect of inf al rate of y year,	lation on	financial	ng 10%				
	Define inflation appraisal of pro	and effort. al internasis ever	ect of inf al rate of y year,	return by Cash	financial y assumir Inflow (i	ng 10%	10	2	III	1.2.1
	Define inflation appraisal of pro Calculate the recon compound bate Year Cash out 0 10,00,00	and effort. al internasis ever	ect of inf al rate of y year,	Cash)	financial y assumir Inflow (i	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound ba Year Cash out 0 10,00,00 1 2	and effort. al internasis ever	ect of inf al rate of y year,	Cash) 4,00,0 2,50,0	financial y assuming Inflow (i	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound ba Year Cash out 0 10,00,00 1 2 3	and effort. al internasis ever	ect of inf al rate of y year,	Cash) 4,00,0 2,50,0 2,50,0	financial y assumir Inflow (i - 000/- 000/-	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound bate Year Cash out 0 10,00,00 1 2 3 4	and effort. al internasis ever	ect of inf al rate of y year,	Cash) 4,00,0 2,50,0 2,00,0	financial y assumin Inflow (i	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound ba Year Cash out 0 10,00,00 1 2 3	and effort. al internasis ever	ect of inf al rate of y year,	Cash) 4,00,0 2,50,0 2,00,0 2,00,0	financial y assumir Inflow (i - 000/- 000/- 000/- 000/-	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound ba Year Cash out 0 10,00,00 1 2 3 4 5 6	and efficient. al internasis ever	ect of infall rate of y year,	Cash) 4,00,0 2,50,0 2,00,0 2,00,0 1,50,0	financial y assumin Inflow (i	ng 10%				
	Define inflation appraisal of pro Calculate the recon compound bate Year Cash out 0 10,00,00 1 2 3 4 5	and efficient. al internation (in the content of t	ect of infall rate of ry year, n Rs./-)	Cash) 4,00,0 2,50,0 2,50,0 2,00,0 1,50,0 n various	financial y assumir Inflow (i - 000/- 000/- 000/- 000/- 000/- phases of	ng 10%				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

	A) Define Following terms;					
6.a	 Strategic plan, 2. Implementation stra Strategic implementation process, Systematic implementation plan. B) Explain best practices in Implementation plans. 		10	3	I	1.2.
6.b	What are the different types of project place consider while implementing infrastructure	ans should be re project?	10	3	I	1.2.1
	Explain the following components of proj implementation along with one example,	ect		-		
7.a	 Design Contracts & agreement Installation 		10	3	II	1.2.1
l.b	Your organization has won a tender to crea "Software as a Service" product, and you'r the project. You decide to use a Gantt chart to organize necessary tasks, and to calculate the likely timescale for delivery. Construct GANTT chart, A. High level analysis B. Selection of server hosting C. Configuration of server	e in charge of	10	3	VI	1.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

E. Detailed analysis of supporting modules	2 weeks	
F. Development of core modules	3 weeks	
G. Development of supporting modules	3 weeks	
H. Quality assurance of core modules	1 week	
I. Quality assurance of supporting modules	1 week	
J. Initial client internal training	l day	
K. Development and QA of accounting reporting	1 week	
L. Development and QA of management reporting	1 week	
M. Development of management information system	1 week	
N. Client internal user training	l week	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination, May, 2019

Program: B. Tech. Civil

Duration: 3Hr.

Course Code: PEC - BTC - 813

Maximum Points: 100

Course Name: Pavement Design and Construction (Elective - II)

Semester: VIII

Notes: Assume suitable data if required

	Questions	Points	CO	BL	PI
Q.No.					
	Write short notes on (solve any four)		01		
	(i) Temperature Stress in Concrete Pavement		01		
0.1	(ii) Burmister two and Three Layer Theory	20	01	02	1.6.1
Q.1.	(iii) Equivalent Single Wheel Load (ESWL)	20	01	02	1.0.1
	(iv) Construction procedure of fly ash embankments		03		
	(v) Mechanistic approach in Pavement Design		-		-
Q.2.	Discuss the Factors to be Consider for Design of Cement	01	01	02	1.6.
a	Concrete Pavements for Low Volume Roads	•			
	Explain field procedure of conducting the Pate Bearing Test.		1	11==110	1
	How the modulus of subgrade reaction can calculate. Discuss	10	04	04 03	1.6.
b	how you will apply the correction for plate size and worst				
	moisture condition.		1	ļ	
Q.3.			0.4	02	1,
а	Discuss with neat sketch field procedure of construction of	10	04	03	1.6.
	cement concrete Roads. The plate bearing test were conducted using 30 cm diameter		 	-101-1-	-
	plate on subgrade soil and over a base course of thickness 30				1
	cm. the pressure yield at 0.25 cm deflection on subgrade and				1
	base course were 1.2 kg/cm ² and 2.5 kg/cm ² respectively.				
	Design the thickness of base course required for a wheel load of	10	01	04	2.5.
	5100 kg with a tyre pressure of 5.5 kg/cm ² for an allowable				
b	deflection of 0.25 cm using Burmister two layers theory.				
	If 7.5 cm thick bituminous concrete layer having modulus of				
	elasticity 5000 kg/cm² to be provided at the top of base, calculate				
	the equivalent thickness of base to be replace, also design three layers system. Draw a neat sketch showing the cross section of				1
	pavement.			i	Í

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination, May, 2019

Q.4.					1
a	Discuss the Procedure for preparation and approval of DPR in PMGSY scheme.	06	04	03	1.6.1
b	Cement concrete pavement has a thickness of 30 cm. design the tie bar in longitudinal joint using the data given below; Allowable working stress in steel tie bar = 1250 kg/cm ² Unit weight of concrete = 2400 kg/m ³ Allowable working stress between steel tie bar and concrete = 17.5 kg/cm ² Coefficient of friction = 1.2	07	01	04	5.4.1
c	Calculate the wheel load stress due to edge loading and corner loading using Westergaards approach and Modified Westergards approach using following data Wheel load = 5100 kg, Modulus of Elasticity of Concrete = 3.1 *10 ⁵ kg/cm ² Modulus of subgrade reaction, k = 8 kg/cm ³ , Thickness of	07	01	04	5.4.1
	slab = 22 cm Radius of loaded area = 16 cm, Poisons ratio = 0.15				
Q.5.	tr This is a first the property of the propert	06	01	04	į
a	Kansas Triaxial Method for Flexible Pavement Design	06			
b	Discuss Rutting and Fatigue failure criteria	06	04	03	
c	Design the thicknesses of different layers of flexible using triaxial method for the following data. Wheel load = 5100 kg, Radius of contact area = 15 cm, Traffic coefficient, X = 1.25, Rainfall coefficient, Y = 0.8, design deflection, Δ = 0.25 cm, modulus of elasticity of subgrade soil E_s = 130 kg/cm ² , modulus of elasticity of base course material, E_{buse} = 375 kg/cm ² , modulus of elasticity of bituminous concrete layer material = 1200 kg/cm ² and the thickness of bituminous concrete is 9.0 cm.	08	01	04	5.4.1
Q.6.					
a	How will you decide Optimum Quantity of Lime required for Stabilization of Subgrade soil through Laboratory test.	06	04	02	2.5.1
b	A Plate Bearing Test conducted on subgrade soil using 30 cm diameter plate. The load value and corresponding average dial gauge readings are given in the Table 1. Determine the modulus of subgrade reaction. Apply the correction for plate size.	07	01	03	5.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination, May, 2019

c Q.7.	The diameter of largest size particle is 50 mm. estimate the percentage 40 mm, 25 mm, 20 mm, 12.5 mm, 10 mm, 4.75 mm, 2.36 mm, 1.18 mm and 0.075 mm size particles in a given mix for maximum density-using Fuller formula.	07	04	04	2.5.1
a a	Explain Benkelman Beam Theory	05	02	02	1.6,1
b	Discuss classification of Low cost Roads	05	04	01	1.6.1
c	The Benkelman beam study was conducted on a stretch of 10 km long road and 10 sets of observations taken are given in Table 2. If the least count of dial gauge is 0.01 calculate the rebound deflection. The traffic volume study shows that the road carries a traffic of 2200 cvpd, the temperature at the time of Benkelman beam study was 31°c and subgrade moisture correction factor is 1.2, calculate overlay thickness to be provide above existing pavement. (assume VDF = 2.5, LDF = 0.75, Design Life = 10 years)	10	02	03	5.4.1

Table 1.

Mean dial gauge reading in mm	0	0.30	0.55	0.80	1.12	1.40	1.75	2.10	2.20	2.25
Load value in kg	0	600	1200	1350	1810	1960	2110	2200	2280	2370

Table 2.

Sets of Observation	D ₀	D _i	Df
1	0	33	30
2	0	37	32
3	103	41	38
4	104	36	33
5	105	35	33
6	101	42	39
7	101	43	40
8	0	41	38
9	0	42	40
10	0	29	26

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Examination

May - 2019

Max. Marks: 100

Semester: VIII

Duration: 3 Hours

Class: B.Tech. Semeste Name of the Course: Earthquake Engineering

Program: Civil Engineering Course Code: PEC-BTC 502

Instructions:

Attempt any FIVE questions out of SEVEN questions.

Answers to all sub questions should be grouped together.

• Figures to the right indicate full marks.

• Assume suitable data if necessary and state the same clearly.

Question No		Points	CO	BL	PI
	(i) What is Random dynamic Load? Briefly explain how the analysis of structure to random of dynamic Load is done.	3	1	1	2.1.1
Q1 (a)	(ii) What is an earthquake? How the earthquakes are classified based on their causes?	3		1	1.2.1
	(ii) Explain the different types of seismic waves and their characteristics	Briefly explain how of dynamic Load is are earthquakes are nic waves and their 4 2 id slab is supported figure. The height will be the degrees specify these DoF. If the structure for ately. The structure for ately. The weight is supported for ately. The structure for ately.	1.2.1		
	(i) A single storey structure with rigid slab is supported on four corner columns as shown in figure. The height of structure is 6.0 m. In general what will be the degrees of freedom for this structure? And specify these DoF. Calculate the natural frequency of the structure for excitation in X and Y direction separately.	5	1	3	1.3.1, 1.4.1
Q1(b)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5		3	1.3.1
10	on slate is 150Kg/m^2 , uniformly distributed. Assume $\xi = 5\%$ and $E = 2 \times 10^4 \text{ N/mm}^2$.	X Rigid	Stal		

20m

(i) (ii) Q2 (b)	A single story frame with rigid girder as shown in figure below is to be designed for ground motion, the response spectrum of which is shown in figure1. Determine the design value of lateral deformation and bending moments in the columns (ii) If the columns of the frame are hinged at base, determine the design values of lateral deformation and bending moments in columns. Comment on the influence of base fixity on the design deformation and bending moments	4	2	3	3.3.
	determine the design values of lateral deformation and bending moments in columns. Comment on the influence of base fixity on the design deformation and bending moments	4		3	3.3.
	6·m 4m				
belo ot	to storey frame with free vibration characteristics as given w is subjected to a ground motion defined by $\mathbf{u}_g = \mathbf{u}_{g0} \sin \mathbf{v}$ where $\mathbf{u}_{g0} = \mathbf{0.2g}$ and $\mathbf{v} = 25.0$ rad/sec. Calculate mum displacements of each storey. Assume	8	1,2	4	2.3.1
Q2(c)	Floor Mass Mode ω , Mode Shapes No. (t) No. rad/sec				
	Φ_{i1} Φ_{i2}			Ì	
	1 20 1 14.58 1.0 1.481 2 15 2 3 .07 1.0 -0.822				

	The plan of one storey building is as shown in figure. The structure consists of a roof idealized as a rigid diaphragm, supported on three frames A, B, and C as shown. The roof weight is uniformly distributed and has magnitude 200 $\rm Kg/m^2$. The lateral stiffness are $\rm K_y=16000~\rm KN/m$ for frame A and $\rm K_x=25000~\rm KN/m$ for frames B and C. The plan dimensions are b= 30 m d=20m and e=3.0m. The height of building is 10m. Determine the natural frequencies and modes of vibrations	8	1,2	4	2.4.1
Q4 (a)	of the structure A via	×			
Q4(b)	If the above structure is subjected to ground motion \ddot{u}_{gy} only in Y direction, write down the equations of motion for the system	4	2	4	2.4.
Q4(c)	As a special case, if e= 0, and the above system is subjected to the ground motion only in Y direction, the response spectrum of which is shown in figure 1. Determine the design value of lateral deformation, base shear and bending moment for the system.	8	2	4	2.4.
Q5(a)	What is response spectrum? Explain briefly, the response spectrum characteristics.	5	2	2	1.2.
Q5(b)	Explain the procedure to construct elastic response spectrum for a single recorded ground motion.	5	2	2	2.4.
Q5(c)	A two story frame has the following free vibration characteristics. The frame is to be designed for the ground motion characterized by the design spectrum given in the figure 1 but scaled to peak ground acceleration of 0.5g . Calculate the design values of lateral deformation of floors.	10	2	4	2.4. 2.3.

		Floor	Mass	Mode	ω,	Mode	Shapes				
		No.	(t)	No.	rad/sec		·	_			1
			20		T	Фі	Φ_{i2}				
		1	20	1	14.58	1.0	1.481				
		2	15	2	38.07	1.0	-0.822				
Q6 (a)	Explain measure	how the	e magni	ude and	intensity o	f an earth	quake are	4	1	2	1.2.1
Q6 (b)	1893-20	ie limita)16, und alculate	er what	conditio	ent Static Mons this met	Method. A	As per IS mitted to	3	3	2	2.4.3
Q6 (c)	As per lin the e	IS 1893- earthqua	2016, h	ow man	y mode nee ation by R	d to be co	onsidered Spectrum	2	3	2	2.4.3
06 (4)	on each given be Z=0.24	floor or elow. Use, $1 = 1.5$,	f the frage the formula of the formu	me whose Ilowing and ξ = services response	ed, calculate se pre vibra additional d 5%. Assume spectrum g	tion propo lata: e foundati given in fi	erties are	11	3	5	5.1.1 G.2.1
Q6 (d)	No.	No.	(t)	rad/s		shapes					
					Φ _{il}	Φ_{i2}	Φ_{i3}				
	1	1	20	15.73		0.747	1.0				
	$\frac{2}{3}$	3	20	49.85 77.82		1.0	-0.471				
Q7 (a)	What is ductility	ductility in seism	of a s	tructure' ant struc	? Explain t tures.	he import	tance of	3	3	2	6.2.1
Q7 (b)	Briefly e	xplain t ling str	he differ	ent type resist la	es of structuateral loads	ıral systei due eartho	ms used quake	3	3	2	6.2.1
	(i)Beams		l provis	ions, lor	20-2016, for ngitudinal r	einforcem	-	12	3	2	6.2.1
Q7 (c)	(ii) Shear				ements and valls.	coupling	beams				

Fig. 2 Design Acceleration Coefficient (S₄/g) (Corresponding to 5 Percent Damping)

Fig. 2 (96.(d)

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION -May-2019

Program: Civil Engg.

Duration:3 hrs.

Course Code: HSM-BTC- 805

Maximum Points: 100

Course Name: E & M

Semester: VIII

Notes:

1. Q.1. is compulsory & Solve any four from remaining six questions;

O M-			1		
Q.No.	Questions	Points	CO	BL	PI
1.	Solve any four: 1.Entrepreneurial Culture 2. Functions of Management 3. SWOT analysis 4. Socio economic origins of entrepreneurship 5. Line & line & staff organization.	20	1-3	III	2.1.3
2.a	What are the different barriers affecting to entrepreneurship process?	10	1	I	2.1.3
2.b	Explain the various classification/types of entrepreneurs along with one example. (any 10)	10	1	II	2.1.3
3.a	Explain the necessity of entrepreneurial motivation. Also explain the McClelland Need for Achievement Theory	10	2	II	2.1.3
3.b	Explain various types of Ownership structures in organization.	10	3	II	2.1.3
4.a	Define the small scale industry and also Highlight the chief characteristics of it	10	3	I	2.1.3
4.b	A.] a product currently sells for Rs. 12/unit. The variable costs are Rs.4/unit and 10000 units are sold annually and a profit of Rs.30, 000 is realized per year. A new design will increase the variable cost by 20% and fixed cost by 10% but sales will increase to 12000 units per year. a) at what selling price do we break even b) if selling price to be kept same what will the annual profit?	10	3	I	1.1.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

	gen	erating	revenue of Rs.25000, 45000 & 65000 hird year respectively. If discount rate NPV?) in first.				
			the following transactions in the book	s of Mr.	<u> </u>		-	-
	Am	it Kelka	r for Dec 2018.			İ		
	1	Date	Transactions	Amount				t
		1	He started the business with cash	40000				
		3	Purchased goods on credit from Mr.Nitin.	1800				
		8	Purchased furniture from Alam furniture Mart on credit	3400				
5.a		10	Deposited money in bank of MAHARASHTRA	8500	10	3	III	2.1.3
		12	Cash sales	600		1		
		16	Paid in full to Alam furniture Mart	-			1	1
		19	Paid electricity charges	7000				
		24	Received commission	3000			1	
		26	Sold goods worth on credit to Aakash	5000				
		27	Paid insurance premium for goods by cheque	900				
5.b	Post Led	above (ger & ba	Q.6.a) transactions into Mr. Amit kellulance all accounts.	kar's	10	3	III	2.1.3
6.a	Prep Bala	are Trac	ling Account, Profit and loss Account et for Q.6.a.	t &	10	3	II	2.1.3
6.b	Expl with	ain the i	mportance of Management in entrepre characteristics of management.	eneurship	10	1,3	II	6.1.1
7.a			nt is an art, science or profession" Jus th examples.	tify above	10	1,3	V	7.2.1
7.b	Disci	uss cont tific ma	ribution made by "Fredrick Taylor" to nagement.	owards	10	1,3	VI	7.2.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai – 400058.
End Semester Examination, May- 2019

Max. Marks: 100

Competer

Duration: 3 hour

Class: Final Year B.Tech.

Semester: VIII

Program: Civil

Name of the Course: Construction Management

Course Code: PC-BTC-803

Instructions:

1. Question No 1 is compulsory.

- 2. Attempt any four questions out of remaining six.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary

	Question No. 1	(solve any five	fro	m a t	og)		Points	CO	BL	PΙ
	(a) Why construction I	ndustry is calle	d Ur	ique	and [Femporary?	4	1	1	1.3.1
	(b) "All contracts are contract", justify states					ents are not	4	3	1	1.3.1
Q1	(c) Discuss the factors						4	1	2	1.4.1
Ų	(d) Differentiate Q.C.	and Q.A.					4	2	2	1.4.1
	(e) Explain with neat s	ketch working	capit	al cy	cle		4	2	1	1.3.2
	(f) Describe steps to be	considered for pa	rojec	t mor	itorin	g.	4	1	1	1.3.1
	(g) Explain the term re	source 'smoother	ning'	•			4	2	2	1.4.1
	(a) Three time estima project are given below	v, draw the nety				activity in a	10	1	2	2.3.2
	Sr. No.	Activity	t ₀ ,	t _m ,	t _p					
	1	1-2	4	7	16	1 1				
	2	1-3	5	14	23	_				
	3	2-4	7	16	19				İ	
	4	3-4	4	7	10	-				
Q2	5	4-5 3-5	8	17	32	-				
	Find the expected durati (i) Determine expe (ii) Determine prob and 3 days after (iii) Also determine	on and variance of the duration of pability of complete the normal durate the duration of the probability of complete the duration of the dura	orojection ion. the p	ct. of pr projec	oject, t, con		10			
	(b) Discuss in detail the	salient features o	f mi	nimu	n wag	ges act, 1948.		3	2	2.1.2

			cuss the		of wok in	nstructions	and checklist for the	08	2	2	2.3.2
					nows the	details of	activities of a small				
	pr	oject:									
		Sr. No.	Activity	Duration i	n days	Cost (Rs.	Thousand)				
		140.		Normal	Crash	Normal	Crash				
Q3		1	1-2	4	2	900	1200				1
QJ		2	1-3	2	1	7500	13500	12	1	1	1.4.1
		3	2-4	6	3	1500	2625				
	[4	2-5	4	3	1800	2400				
		5	3-5	5	3	1500	1800				
		6	3-7	10	5	3750	5250				
		7	4-5	5	5	1950	1950				
		8	5-6 5-7	8	6	3000	3150	-			
		9	6-8	7	5	1500 3000	1500 3500				
	1	10				ļ					
		11	7-8	8	6	2400	3000			ł	
	11	ne ina		of project			sponding cost				
				i) the optin							
	(0	λ Δς		<u> </u>			are as given below:	10	1	3	2.3.2
	(a	ij Au	Activ		Duration(Da		esource Rate	10	1		2.5.2
			P(1-		5	10)	5				
	Q(1-3) 7				7		4				
			R(2-		4		2	:			
			Dumm	y(4-5)	-		-				
Q4		Ĺ	S(2-		7		3				
Q-T		-	T(3-		7		6				
		-	U(5-		9		4				
		-	V(6- W(7		6		4 8		1		
	l 6	ا Prer (····	rce histogi		ly start sch					
		-		nee mstogi ost preferi		•	edule.				
	1 `	,		-			for the construction	10	2	3	1.4.1
	, ,	•		•		_	yout for the same.				
							Structure (WBS) and	10	1	2	2.1.2
	ı `			-			uilding an proposed	10	-	-	
		-		-	•	_	trical and Mechanical				
Q5	ı	partn	-		6	, - -					
•		-		mean by c	ost overrur	ns in a cons	truction project?	10	2	1	1.3.1
	W	hich	methods v	would you	suggests co	ontrolling t	he overruns?				
	10) W/L	et is Ti	no Polono	Tashnia	102 Civo	the suitable example	08	3	1	1.4.1
	٠.	•		ne Bananco he various	_			00	3	1	1.4.1
	1		_	e EOQ for			-	05	1	1	1.4.1
06							0/-, Unit price of	0.0	1	•	1
Q6							carrying cost with				
	ju	stifica	tion).								
			-	rent person	nel protect	tive equipn	nent (PPE) to prevent	07	2	2	2.3.2
	ac	ciden	ts at site.	······					<u> </u>	<u> </u>	

(a) What is	the need a	and importance of	materials management	10	3	2	1.3.4
			rief the importance of	10		-	1.5.1
A-B-C anal			mor maporamico oi				
	•	shows data related	to a small construction				
project. Dray	v a network	and give node num	bering using Fulkerson's	10	1	1	2.3.1
rule. Identify	the critical	path and critical acti	vities. Also find the total		ľ		
float, free flo	at and Indep	pendent float.					
	_						
Act	ivity	Following	Duration in				
		activity	days				
]	H	J,M	5			ļ	
	J	K	3				
	K	L	20				
]		В	11				
<u> </u>	M	N,P,T	4		1		
	N	Z	3				
]	P	R,S	4				
	R	Y	3		İ		
	S	W	5				
	Γ	W	3				
V	V	X	2				
	K	A	20				İ
<u> </u>	Y	A	15				ł
	Z	· A	16				
	4	В	9				
7	3		5			1	

Q7

Normal Deviate .	(76)	Normal Deviate	
Last 1.	50.0 5-3 46.0	+ 0.1	9:0 50.0
- 0.2 - 0.3	42.1 38.2	+ 0.2	57.9
- 0.4	34.5	+ 0.3	61.8 - 65.5
- 0.5 - 0,6	30.8 27.4	+ 0.5	692
÷ Ø.7	*24.2	+ 0.6 + 0.7	72.6 75.5
- 0.8 - 0.9	21.2	+ 0.8 + 0.9	78.8
- 1.0	15.9	+ 1.0	84.1
- 1.1 - 1.2	13.6 11,5	+ 1.1 + 12	86.4
- 1.3	9.7	113	88.5 903
T. 14	8.1	TY DESCOVE	91.3
1.6. Starte	5.5	+ 16 sc in	1 .2 94.5 vite!
all Areas as ex	1000 4.5 00 mg.	#:1.71	intiv eos tarq
The Sail Trans	16019-2-2-	contribe ser a	27.1
in a manico	u sif afalaa -	+ 2.1	ar a stant or
1 2 1 1 1 day	Green and Bridge	127	of the state of
2.4	net 10.0 total	La Contraction	992
1 is 11 is	0.6 0.5	2.5	5990994Pidi n
- 2:8	0.3	27	t per 1
- 2.9	0.3	+ 2.9	99.8
- 3:0	0.1	+ 3.0	99.8

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2019

Program: B.Tech. Civil Engineering

Duration: 03 hours

Course Code: PC - BTC802

Maximum Points: 100

Course Name: Quantity Survey Estimation & Valuation Semester: VIII

Notes:

1. Question 1 is compulsory

2. Attempt any FOUR out of remaining SIX questions

3. Answer to each question should be written on a new page

4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	СО	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the importance of it in estimation and costing: i. Measurement of works	20	1	1	3.5.4
	ii. Recommendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a "ender notice to be drafted for any construction		3	1	3.5.2
	work. c) List all methods of valuation of land. List first five tables of valuation and its purpose.		4	1	3.5.4
	d) State the characteristics of mass haul diagram (MHD). Draw MHD for earthwork in excess, earthwork in deficit and balanced earthwork		2	1	3.5.4
	e) State the requirements of a good 'specification for materials' and specification for item of work'.		2	1	10.4.2
2	Prepare an estimate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Item1: Providing and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providing and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in walls. Item 4: Providing 15mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of work for the item 2 in Q.1 is described as: 'Providing and laying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'	,			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2019

	a) Give detail b) Perform reinforcen output con @ 0.20, 1 @0.10, v worked or quantity y	rate ana nert as 2 nstants (Mandoor ibrator (ut, calcul	alysis for the days per @ 3.00 @ 0.10.	or the interpretation that the concrete country for the country is the country in	item co ete volu or the w @0.90, the rate he item	me. The ork are: Mixer o that yo of work	Mason perator bu have	10 10	2 2	3 4	10.4.2
4	a) The owner The future However, immediatel the building rate of inter 6%, determine	life of if reco y at an e g would rest as 8' nine who led repai	the build commend estimated be increased and rate ther it rs to the	ding is ed repair l cost of eased to ate of int is econo building	estimate airs are Rs. 3,00 30 years erest on omical to	ed as 12 e carrie 1,000, the s. Assum sinking o carry	2 years. ed out e life of ning the fund as out the	10	4	4	2.8
	b) Explain the example.	belting	method	of land	valuatio	n with a	a proper	10	4	2	2.6
5	a) Draft a type building has campus. To crores and	iving ca	pacity o osed we	f 1000 s ork is e	students stimated	in your to cos	college t Rs.10	08	3	3	3.5.2
	b) Explain Usuitability, c) Differentia Request fo	init pric advantag te betwe	ce (It e m ges and o een Exp	n rate) disadvan	contract tages.	and s	state its	08 04	3	1	3.5.2
							etina of	05	2	2	2.6.
6	a) State the earthwork b) Estimate the 10m formate 2:1 (cutting)	in transphe quantation wic g and f	ortation ity of ea Ith with illing) a	works. arthwork the follo nd no c	in cutti owing da ross sloj	ng for a ata. Side pe. Estir	road of slope is mate the	15	2	4	2.8
	total cost of cost of fill			e cost of	cutting	is Rs.14	0/m³ and				
	Chainage (m)	0	30	60	90	120	150				
	Ground level (m)	80.50	79.30	81.40	84.00	85.10	83.50				
	Formation	 	 	Rising g							

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2019

Program: B.Tech. Civil Engineering

Duration: 03 hours

Course Code: PC - BTC802

Maximum Points: 100

Course Name: Quantity Survey Estimation & Valuation Semester: VIII

Notes:

1. Question 1 is compulsory

2. Attempt any FOUR out of remaining SIX questions

3. Answer to each question should be written on a new page

4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	со	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the importance of it in estimation and costing: i. Measurement of works	20	1	1	3.5.4
	ii. Recommendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a render notice to be drafted for any construction		3	1	3.5.2
	work. c) List all methods of valuation of land. List first five tables of		4	1	3.5.4
	valuation and its purpose. d) State the characteristics of mass haul diagram (MHD). Draw MHD for earthwork in excess, earthwork in deficit and balanced earthwork		2	1	3.5.4
	e) State the requirements of a good 'specification for materials' and specification for item of work'.		2	1	10.4.2
2	Prepare an estimate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Item1: Providing and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providing and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in walls. Item 4: Providing 15mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of work for the item 2 in Q.1 is described as: 'Providing and 'aying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM - May 2019 Examinations

Program:

Civil Engg.

Duration: 3 hr

Course Code: PC-BTC801

Maximum Points: 100

Course Name:

Design and Drawing of Reinforced Concrete Structures

Semester: VIII

Notes:

1) Attempt any one of the following.

2) Use of IS 456:2000 is permitted.

3) Figures to right indicate full marks.

4) Assume suitable data if necessary and state the same clearly

Q.No.	Questions	Points	co	BL	PI
1.	For the floor system shown in figure 11, design SLAB S1-S2-S3 Take live load = 3KM m ² and 200mm soil fill (density 18Kn/m ³). Use M30 and Fe-500 Draw reinforcement details along the section shown. Give all checks.	20	1,2,3,4	4,5,6	3.1.3,2.1.4
2.	For the floor system shown in figure 1, design beam b1-b2-b3. Use M30 and Fe-500. Draw reinforcement details. Assume slab depth as 200mm and assume 200mm soil fill (density 18 Kn/m³) on slabs. Give all checks with proper detailing of the beams.	20			3.1.3,1.1.4
3.	A rectangular water tank 4.5m long ,2.25m wide and 2.25m high has its walls hinged at top and bottom. Design walls of tank. Use M30 and Fe 415. Use IS code method.	20	1,2,3,4	4,5,6	4.1.3,4.1.4
4.	Design circular tank using approximate method with fixed base resting on ground and free at top for capacity of 550m3. Height of tank is restricted to 5.2m. Use M-30 and Fe-415. Draw reinforcement details. oct =1.5N/mm2 and ost=130N/mm2.	20			3.1.2,2.1.4
5.	The staircase room for a four storeyed framed structure of a residential building is of size 3.9m X 5.3m between centre of columns. The columns are of size 250 mm x 250mm. The width of beam and supporting wall is 230 mm. The floor to floor height is 3.2 m. Use M-25, Fe-415. Design a suitable dog-legged stairs and draw details of reinforcement for both the flights	20			3.1.2,2.1.4
6.	A reinforced cantilever RW is supporting backfill of height 4.5m above ground level with density of soil =18 kN/m3, Angle of repose=30°, S.B.C of soil=175 kN/m2 and coefficient of friction between concrete and soil =0.3. Design the Stem and heel of the wall only showing all stability checks. Draw reinforcement details also. Use M30 & Fe 415.	20	ı		3.1.2,2.1.4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM - May 2019 Examinations

	The layout of the columns of the building is shown in figure 1. The outer column are 450x450mm in size and carry load of 1500kN each. The inner column are 450x450mm in size and carry a load of 1500kN each. Consider SBC of soil as 200kN/m2. Use M30 and Fe-415 Design only main beam of the raft foundation. Show reinforcement details also.	20	1,2,3,4	4,5,6	4.1.2,5.1.4
7.					<u> </u>

¥.	xla					3/6	5/s=20				
			0=0		3/9-6	*	3006/2	-2	245-2	2	0-2
		M.	M's	×.	My	Me	M's	Ms	Ms	Me	M.
Ξ	3	ව	€	3	9	3	ê	ହ	(10)	(11)	(12)
8	TEX	+++	90000 ++0-0000 +++	+0-013 +0-029 +0-029	+0-009 +0-015 +0-013	-0-007 -0-012 -0-011	-0-037 -0-059 -0-053	+0-015 +0-028 +0-029	+0-009 +0-015 +0-013	+0-023	+0-020 +0-020 +0-016
1.75	3/1/2	+0-025	+0-050 +0-050 +0-016	+0-0-23-0+	+0-009 +0-015 +0-013	-0-007 -0-012 -0-010	955	+0.022	+0-008 +0-013 +0-012	+0-020 +0-032 +0-032	++0001
8. 1.	### ###	+0-025 +0-045 +0-041	+0-013	+0-016 +0-028 +0-029	+0-009 +0-015 +0-013	-0-007 -0-011 -0-010	455 455 455 455 455 455 455 455 455 455	+0-007 +0-015 +0-019	+0-006 +0-011 +0-010	+0-027	+0-013 +0-021 +0-017
ន្ទ	#2# ****	+0.043	+0-050 +0-050 +0-016	+0-016	+0-010 +0-015 +0-013	010-0 -0-010-0	00000	\$00.0 +0.00 +0.00 +0.013	++0-003 ++0-007 	+0-007 +0-018 +0-021	+00019
8	#2#	900-0+ +0-0+	+0-013+0-013+0-016	+0-030 +0-030 +0-031	+0-010+	900-0-	999	+0-001 +0-002 +0-007	4+++ ++++	++0-007	+0000 +0014 +0013
0-73	<u> </u>	+0-027 +0-045 +0-045	+0.0030++0.0030++0.0030	+0-031	+0-010 +0-016 +0-014	-0.008	**************************************	+0-003 +0-003 +0-005	10000	1 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+00000 +00000 +00008
9.0	TET	++0-042 ++0-046 ++0-042	910-0+ 0-050-0+ + 0-050	+0-019 +0-033 +0-033	+0-010+0-017	10000	-0-021 -0-034	400-0-1 600-0-1 800-0-1	-0-010 -0-015 -0-010	* 000000000000000000000000000000000000	-0-009 -0-009 -0-008

TABLE 7 SHEAR AT EDGES OF WALL PANEL HINGED AT TOP AND BOTTOM

(Clauses 2.3.1, 2.3.3, 2.3.3.2, 2.3.4, 2.3.4.1 and 2.3.6)

11	LHINGED	. #	T
	FIXED	FIXED	-
		CHINGED	1

	1	1	2	5	10	Infinity
(1)	(2)	. (3)	(4)	(5)	(6)	(7)
Mid-point of bottom edge	+0·140 7 ua ²	+0.241 9 wa2	+0·329 0 wa²	· .	_	+0.333 3 wa²
Corner at bottom edge	-0-257 5 wa²	-0.439 7 wa²	$-0.5833 wa^{2}$	_	_	-0-600 0 wa²
Mid-point of fixed side edge	+0-128 0 wa®	+0.258 2 ua²	+0-360 4 wa²		-	+0.391 2 waz
Lower third-point of side edge	+0·173 6 wa²	+0.311 3 ua²	+0.402 3 wa2		-	+0-4116 was
Lower quarter-point of side edge	+0.191 9 wa²	.+0.315 3 wc2	+0.390 4 wa² 0.053 8 wa²b	0-120 3 ang ² b -	0.143 5 me24	+0.398 0 we2 0.166 7 we25
Total at top edge Total of bottom edge	0.000 0 wa² b 0.048 0 wa² b	0-005 2 wu²b	0.181 8 wa2b	0-271 5 web.		0-333 3 was
Total at one fixed side edge	0-226 0 wa ²	0-199 4 wa²b	0-132 2 walk	0-054 1 and b	0-027 1 mc ²⁴	0-275 we³* 0-500 0 we³÷
Total at all four edges	0-500 0 wa²b	0-500 0 wa*b	0-500 0 ma2b	0-500 0 sze ² é	0-500 0 ave 25	C-200 () (DELA

Norm 1 — Negative sign indicates that reaction acts in direction of load. Norm 2 — w = Density of the liquid.

^{*}Estimated.

Bharate vicuaBhavan s

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2019

Program: B.Tech. Civil Engineering

Duration: 03 hours

Course Code: PC - BTC802

Maximum Points: 100

Course Name: Quantity Survey Estimation & Valuation Semester: VIII

Notes:

1. Question 1 is compulsory

2. Attempt any FOUR out of remaining SIX questions

3. Answer to each question should be written on a new page

4. Assume suitable data wherever necessary and state it clearly

Q.No.	Questions	Points	СО	BL	PI
1	Answer the following: (4 marks each) a) State the Indian standard (IS) code for the following and give the importance of it in estimation and costing: i. Measurement of works	20	1	1	3.5.4
	ii. Recommendation for labour output b) Define 'Tender' for construction work. State the necessary elements of a sender notice to be drafted for any construction		3	1	3.5.2
	work. c) List all methods of valuation of land. List first five tables of valuation and its purpose.		4	1	3.5.4
	d) State the characteristics of mass haul diagram (MHD). Draw MHD for earthwork in excess, earthwork in deficit and balanced earthwork		2	1	3.5.4
	e) State the requirements of a good 'specification for materials' and specification for item of work'.		2	1	10.4.
2	Prepare an estimate (quantities only) for the following items from given plan and section details in Fig.1. (5 marks each) Item1: Providing and laying M20 grade concrete in footings and columns upto plinth level Item 2: Providing and laying M20 grade concrete in plinth beams Item 3: Providing I class brickwork in CM 1:4 in walls. Item 4: Providing 15mm thick internal plaster in two coats in CM 1:4	20	1	4	2.8
3	The scope of work for the item 2 in Q.1 is described as: 'Providing and 'aying M20 grade in-situ concrete in plinth beams excluding formwork reinforcement'				

÷	x/s					3/6	b/e=2.0				
		,	9=0	7.	7-64	Ļ	3 5/2	2	2/0-2		0=2
		Me	M,	K.	K,	Me	My	Me	M,	Me	K,
3	2	<u>છ</u>	€	<u>e</u>	9	6	<u>@</u>	ହ	(10)	(11)	(12)
8	<u> </u>	\$550 \$60 \$60 \$4++	910-0+ ++0-018 +++	+0-013 +0-028 +0-029	+0-009 +0-015 +0-013	-0-007 -0-012 -0-011	-0-037 -0-059 -0-053	+0-015 +0-028 +0-029	+0-009 +0-015 +0-013	+0.025	+0-020 +0-020 +0-016
1.75	3/4	+0-042	+0-050 +0-050 +0-016	+0-015 +0-028 +0-029	+0-009 +0-015 +0-013	-0-007 -0-012 -0-010	655 655 655 655 655 655 655 655 655 655	+0-011	+0-008 +0-013 +0-012	020-0-1 020-0-1 1-1-1	+0-013 +0-021 +0-013
8 ,	TET	+0-025 +0-048 +0-041	970-0+	+0-016 +0-029 +0-029	+0-009 +0-015 +0-013	-0-007 -0-011	**************************************	+0-007 +0-015 +0-019	+0-000 +0-011 +0-010	+0-014 +0-027 +0-029	++0001 +00021 7
8	TEX	+0-043	+0-030 +0-030 +0-030	+0-016 +0-029 +0-030	+0-015 +0-015 +0-013	-0-000 -0-010 -0-010	00000	\$00-0+ +0-008 +0-013	+++ 0-007 0-007 0-008	+0-007 +0-018 +0-021	+0-011
8	### ###	+0-05+	+0-050 +0-020 +0-016	+0-030 +0-030 +0-031	+0-010 +0-016 +0-014	900-0-	######################################	++0-005 ++0-002	\$000 000 000 000 000 000 000 000 000 00	++0.007 ++0.007 +0.013	+0-008 +0-014 +0-013
0-75	TET	+++ +0-042 +++ 0-045	+0-013 +0-020 +0-020 +0-016	+0-031	+00010+0+0010+0014	-0.008	\$\$\$ 999	0003	\$\$\$ \$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+00000+
95	TUT	++0-046 ++0-046 ++0-046	910-0+ 020-0+ 0-0+	0000 0000 0000 0000 0000 0000 0000 0000 0000	+0-010 +0-017 +0-015	-0.004 -0.007	-0-021 -0-034	900-0 900-0 900-0	0010	70000 00000 00000	10000

TABLE 7 SHEAR AT EDGES OF WALL PANEL HINGED AT TOP AND BOTTOM

(Clauses 2.3.1, 2.3.3, 2.3.3.2, 2.3.4, 2.3.4.1 and 2.3.6)

	1	1	2	5	10	Infinity
(1)	(2)	. (3)	(4)	(5)	(6)	(7)
Mid-point of bottom edge	+0-140 7 ua ²	+0.241 9 wa2	$+0.3290 wa^{2}$	···· ,		+0.333 3 wa²
Corner at bottom edge	-0-257 5 wa²	-0.439 7 wa²	-0·583 3 wa²	-		-0-600 0 wa²
Mid-point of fixed side edge	+0-128 0 wa®	+0·258 2 us²	+0-360 4 wa²			+0.391 2 wa²
Lower third-point of side edge	+0·173 6 wa2	+0.3113 us2	+0.402 3 was	*		+0.4116 was
Lower quarter-point of side edge	+0.191 9 wa²	, +0.315 3 we ² 0-005 2 we ²	+0.390 4 wa² 0.053 8 wa²b	0-120 3 and 6 -	 0.143 5 ma24	+0.398 0 ws² 0.166 7 ws²b
Total at top edge	0.000 0 wa24	0.096 0 ws2b	0.181 8 wa²à	0-271 5 web.		0-333 3 wes
Total of bottom edge	0.048 0 walb	- 0.090 0 wasa	0.101.0 me-a	0-2/13 We-V .	0.002.0.00-0	0.000.0 000.0
Total at one fixed side edge	0-226 0 walk	0-199 4 wa²b	0-132 2 walb		0-027 1 axc*b	0-275 zes^{3 4} 0-500 0 ze s 5
Total at all four edges	0-500 0 wa ² 5	0·500 0 wesh	0-500 0 ma ² b	0.500 0 we24	0-500 0 me*b	0.200 0 tbt.8

Norm 1 — Negative sign indicates that reaction acts in direction of load.

Norm 2 — w = Density of the liquid.

^{*}Estimated.